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Abstract

The response to the challenges arising during the COVID-19 pandemic has seen the rapid implementation of 
innovative technological solutions which have been built on established knowledge and resources. This has 
been reflected in infection, prevention and control practices (IPC) to minimise the transmission of the disease. 
In this article, we review ultraviolet germicidal irradiation (UVGI) as such a technology. We illustrate the way 
it has traditionally been used in airborne and surface disinfection strategies, and how it has, more recently, 
been adapted. UVGI has been widely used as an environmental IPC measure against tuberculosis in South 
Africa, though challenges have been experienced in the implementation of the technology in public healthcare 
facilities. This has resulted in the development of a knowledge and infrastructure base. We posit that, given the 
established UVGI resources in South Africa, the technology may be a viable environmental IPC solution for 
the COVID-19 period and beyond.

Keywords: coronavirus; COVID-19; UVGI; airborne infection; surface decontamination

Introduction

Coronavirus disease, more commonly referred to as COVID-19, is caused by the severe acute respiratory 
syndrome coronavirus, SARS-CoV-2, which is primarily transmitted through droplets generated by coughing 
and sneezing. It is also spread indirectly when a susceptible individual touches an object which may be 
contaminated by the virus (fomite transmission), or under special circumstances, by the airborne route, 
in enclosed spaces, prolonged exposure to respiratory droplets, or inadequate ventilation and air handling 
(World Health Organization, 2020a; Centers for Disease Control and Prevention, 2020). The World Health 
Organisation (WHO) classified COVID-19 as a pandemic on 11 March 2020. In response to this global 
pandemic, the scientific community has driven several parallel health research streams. These include, among 
others, the genomic and microbiological aspects of the virus; clinical presentation and treatment of the disease; 
vaccine development; epidemiology and disease control; and infection prevention and control (IPC) practices 
in domestic and clinical settings. IPC, by virtue of being a practical and evidence-based approach for protecting 
patients and health workers from being harmed by avoidable infections (World Health Organization, 2016), 
has received much attention. There are several IPC strategies for the control of infectious diseases, including 
environmental and engineering controls (World Health Organization, 2020b). Capitalising on established 
resources and knowledge for the prevention and control of COVID-19 would save financial resources and time 
(Morawska, et al., 2020). This would demand revisiting the measures that have been implemented for infectious 
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diseases and considering how they might be appropriated and deployed to address the challenges posed by 
COVID-19.

In this review article we consider an already well understood and established technology – ultraviolet 
germicidal irradiation (UVGI) – as a potential solution in IPC practices to minimise the risk of transmission 
of COVID-19. UVGI is a recognised environmental control measure used to minimise the risk of transmission 
of airborne diseases, such as tuberculosis (World Health Organization, 2009), and is recommended globally 
by health agencies to kill infectious microorganisms as it is considered to be “cost efficient, accessible and 
installation friendly” (Mamahlodi, 2019).  UVGI refers to the use of ultraviolet radiation, which presents 
in the shortwave UV-C range (100 to 280nm) (International Commission on Illumination, 2003) to kill or 
inactivate microorganisms, such as bacteria, viruses and fungal spores. UVGI has been used to target different 
microorganisms across different mediums in sanitation and disinfection practices, including airborne 
disinfection, surface decontamination and water purification. There is limited knowledge on the feasibility of 
UVGI in preventing and controlling the spread of coronavirus through surface and airborne transmission.

This study reviews the feasibility of UVGI in preventing and controlling the spread of coronavirus. We first 
present an overview of the scientific evidence for UVGI in sanitation and disinfection. We present the ways 
in which UVGI is generated and the susceptibility to UVGI of microorganisms, which are the targets of these 
interventions. Second, we explore the potential that UVGI may have in disinfection and sanitisation strategies 
to minimise risk of transmission. We also review the way in which UVGI has been implemented in the South 
African healthcare context. Our discussion draws on the potential and feasibility of UVGI as an IPC measure 
for SARS-CoV-2 management. 

Generating UVGI

Traditionally, UVGI has been generated using mercury vapour lamps enclosed in UV transmitting glass tubes 
(Reed, 2010). Lamps may either be low pressure, or medium pressure. Low pressure mercury lamps have 
monochromatic emission at approximately 253.7nm, while medium pressure mercury lamps have polychromatic 
emission over a broader spectrum of wavelengths, ranging between 185 to 600nm (Bolton & Cotton, 2011, p. 
57).  The use of mercury vapour lamps can present challenges emanating from the warm-up time required 
for design output, their relatively short lifespan leading to frequent lamp replacement, and regulation on the 
disposal of mercury lamps due to mercury being a toxin. To address the shortfalls, more recently, UV-C light 
emitting diodes (LED) have been developed. UV-C LEDs have the ability to vary their output intensity, may 
be installed in small spaces, require no warm-up time, require little maintenance, potentially have a long life, 
and allow for wavelength selection to target specific microorganisms; UV LEDs however have characteristically 
low wattages and several LED lamps are required to generate an output similar to that of a single low-pressure 
mercury lamp (Nunayon, et al., 2020). UV LEDs have had limited technological application due to low radiant 
efficiency and their relative high cost; the shorter the wavelength, the lower the radiant energy and the higher 
the cost (Matafonova & Batoev, 2018). 

In humans, UV-C may be absorbed by the outer layer of the eyes and skin, and short-term overexposure may 
be harmful, resulting in photokeratitis and keratoconjunctivitis (NIOSH, 2009). The maximum recommended 
exposure to UV at 254nm is 6 mJ/cm2 over an 8-hour period (NIOSH, 1972) . 

Microorganism susceptibility to UVGI

When UV-C light penetrates a microorganism, it damages bonds in its nucleic acids resulting in an inability 
of the microorganism to successfully replicate. The effectiveness of the UVGI system is dependent on the 
sensitivity of the microorganism to UVGI and the dose of UVGI received by the microorganism. The dose is 
dependent on the UV irradiance and the exposure time of the microorganism to the UV irradiance (Mills, et 
al., 2018, p. e51).  

Characterising the susceptibility of viral aerosols to UVGI is a first step in determining the potential usefulness 
of UVGI for the prevention of indoor airborne transmission of viral infectious diseases (Walker & Ko, 2007).  
Walker & Ko were among the first to investigate the effect of UVGI on viral aerosols. They characterised the 
UV disinfection of a strain of bacteriophage MS2, respiratory adenovirus and coronavirus (which served as a 
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surrogate for the SARS coronavirus). They also compared UV susceptibility at 254 nm between viral aerosols 
and viruses suspended in liquid. During their experimental stage, they found the survival of the coronavirus 
to be very sensitive to the suspension medium and mechanical forces. Coronavirus is an envelope virus, which 
was more likely to be inactivated by mechanical stresses. Bacteriophage MS2 and adenovirus were found to be 
highly resistant to UVGI disinfection, with mean Z values of 3.8x104 and 4.8x104, respectively at a dose of 2608 
µWs/cm2 and 50% relative humidity. The susceptibility of the coronavirus was substantially higher, with mean 
Z value of 37.7x104, at a lower dose of 599 µWs/cm2  and 50% relative humidity. Walker & Ko concluded that 
UV disinfection rates vary widely among viral aerosols and viruses suspended in liquid.

SARS-CoV-2 is structurally akin to SARS-CoV-1 and Middle Eastern respiratory syndrome coronavirus 
(MERS-CoV), both of which are susceptible to UVGI (van Doremalen, et al., 2020; Bedell, et al., 2016).  van 
Doremalen et al. (2020) investigated the aerosol and surface stability of SARS-CoV-2 and compared it to 
SARS-CoV-1, which is the most closely related human coronavirus (Wu, et al., 2020). Five environments were 
investigated (aerosol, plastic, stainless steel, copper and cardboard) under different experimental conditions 
for three hours. SARS-CoV-2 remained viable in aerosol form for the duration of the experiments, with a 
similar rate of decay to that of SARS-CoV-1. SARS-CoV-2 was also found to be more stable on plastic and 
stainless steel, than on copper and cardboard; viable viruses were found on plastic and stainless steel 72 hours 
after commencement of tests. Buonanno et al. (2020) investigated the effect of far-UVC (207 to 220 nm) 
on airborne human coronaviruses alpha HCoV-229E and beta HCoV-OC43. They hypothesised that since 
all coronaviruses are comparable in physical and genomic size, and since these sizes are a factor in radiation 
response (Sparrow, et al., 1967), both these viruses, and all human coronaviruses, would respond similarly to 
far-UVC light. They developed a single-wavelength 222nm far-UVC approach generated by filtered excimer 
lamps; the ability of far-UVC to penetrate microorganisms is limited compared to that of conventional UVGI 
at 254nm. The inactivation rate constant, , for the alpha HCoV-229E and beta HCoV-OC43 strains, was 4.1 
and 5.9 cm2/mJ, respectively at a dosage to kill 90% (D90) of the exposed virus. (3-log reduction).  In their study, 
Buonanno et al. estimated D90 values of 0.56 and 0.39 mJ/cm2, for the alpha and beta strains, respectively. This 
result was comparable to findings by Walker & Ko (2007), who reported a D88 value of 0.599 mJ/cm2 for a strain 
of aerosolised murine beta coronavirus, using conventional UVGI lamps. An advantage of far-UVC is that it 
does not cause harmful exposure to humans. 

Most microorganisms have developed repair mechanisms, which is counterproductive to the damage induced 
by UVGI. Repair mechanisms include photoreactivation, in which the induced damage is repaired using light 
energy, and excision repair, which is a dark repair process in which damaged nucleic acids are replaced (Sinha 
& Hader, 2002). None of the studies we reviewed, investigated photoreactivation and dark repair in the family 
of coronaviruses. 

Sanitation and disinfection strategies for different mediums and different organisms

UVGI systems have been used in water purification, airborne disinfection and surface decontamination. Water 
disinfection by UVGI has been used for more than a century, and has been recommended as an alternative to 
chemical additives for water treatment (Li, et al., 2017). UV disinfection systems have been installed in water 
treatment plants and used in household water treatment applications (Brownell, et al., 2008). Recent studies 
have shown that UV-C LEDs are able to inactivate pathogens in water (Li, et al., 2017; Zou, et al., 2019). As 
SARS-CoV-2 is transmitted via droplet, contact and airborne routes, we focus on UVGI strategies that may be 
effective in addressing these transmission routes. 

Surface decontamination

van Doremalen et al. (2020) showed that virulent SARS-CoV-2 remained (under experimental conditions) on 
certain surfaces for several days. Reid et al. (2020) investigated the use of UVGI disinfection pods on portable 
medical equipment (PME) in a healthcare facility. PME are used by multiple members of staff and multiple 
patients and are a potential source of disease transmission in healthcare facilities. Examples include computer 
workstations, vital signs monitoring devices and porter wheelchairs. The UV disinfection pod investigated 
was made from a lightweight and collapsible material, and it fully contained irradiation from a xenon-pulsed 
ultraviolet light. The study showed a significant reduction in pathogens from all PME in the investigation. 
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Allen (2020) investigated whether regular cleaning using either germicidal wipes or UVGI (Phonesoap - www.
phonesoap.com) led to lower bacterial levels, compared to irregular cleaning, on electronic tablet devices 
commonly used in clinical and research applications. Some manufacturers of electronic tablets discourage the 
use of germicidal wipes, citing the degradation of the screen and moisture exposure, which may affect usability. 
UVGI presents an alternative in reducing pathogen loads on such devices. The Phonesoap exposed the tablet to 
an irradiance of 3274 µW/cm2 from a mercury lamp source, for a period of 30s. Results of the study indicated a 
reduction in the burden of bacteria when regularly cleaning the tablet with germicidal wipes or the Phonesoap 
device versus irregular cleaning. There was, however, no significant difference in reduction of bacterial load 
between the use of germicidal wipes or the Phonesoap device. 

Another strategy for surface decontamination using UVGI is the use of whole-room devices. Bedell et al. (2016) 
report on the use of whole-room UVGI disinfection system – Surfacide (www.surfacide.com) – to inactivate 
strains of MERS coronavirus. Surfacide is an automated UV-C device which incorporates a laser system to 
measure the disinfection space and identify objects nearby; the system is then able to calculate the 360° rotation 
disinfection cycle time. Under controlled experimental conditions, Surfacide was able to disinfect the MERS 
coronavirus strains from surfaces to undetectable viral levels up to 30 minutes after exposure.  Whole-room 
devices have also been used for terminal disinfection. Terminal disinfection refers to a final disinfection step 
taken once visible contamination has been cleaned; terminal disinfection does not replace the need to first clean 
surfaces. However, terminal disinfection would allow for surfaces that are visibly soiled and are most prone to 
contamination to undergo manual cleaning, and terminal disinfection would target all other surfaces (Lindsley, 
et al., 2017). The use of UVGI as a terminal disinfection method had been investigated in healthcare facilities 
(Andersen, et al., 2017)  and ambulances (Lindsley, et al., 2017). As seen in the current COVID-19 pandemic, 
and highlighted by Lindsley et al., ambulances are used to transport contagious patients and become a site of 
transmission via contaminated surfaces; ambulances would therefore have to be decontaminated before they 
are returned to service. Lindsley et al. investigated the efficacy of a custom-built UVGI system for terminal 
disinfection in an ambulance patient compartment and examined the position and reflectivity of surfaces on 
the disinfection time. Their study focused on surfaces that are touched often and those not exposed to direct 
light. They found that the position of the UVGI fixture greatly affected disinfection time as surfaces that were 
further away from the UVGI source and those in shadowed areas received lower dosages of UV-C. The addition 
of reflective surfaces (reflective aluminium or UV-reflective paint) was found to greatly reduce the disinfection 
time. Exposure to UV-C may negatively impact surface materials and different materials are affected by UV-C 
in different ways. Metals and ceramics are least affected by UV-C; polymers are susceptible to degradation by 
UV-C (UVSolutions, 2019).  

Respiratory protection is an important defence against disease transmission and is essential for frontline 
workers who are in contact or exposed to COVID-19 patients. Consequently, there has been an increased 
need and demand for personal protective equipment (PPE) such as N95 respirators. While these respirators 
are not designed for decontamination, several studies have focused on the use of UVGI as a potential simple 
and rapidly deployable technology for decontaminating respirators and masks to address their limited supply 
in the face of the COVID-19 pandemic (Boškoski, et al., 2020; Hamzavi, et al., 2020; Nogee & Tomassoni, 2020; 
Nogueira, 2020; Yang, et al., 2020; Ou, et al., 2020). Decontamination strategies should meet the requirement 
of removing pathogens, not being harmful to the wearer, and not compromising the integrity of any part of the 
N95 filtering facepiece respirators (FFR) (Institute of Medicine, 2006). The shortage of PPE was also considered 
prior to the current pandemic. Mills et al. (2018) investigated a UVGI decontamination and reuse strategy for 
the N95 FFR, as a potential solution in the case of a shortfall of PPE in the event of a pandemic. The aim was 
to decontaminate FFRs without affecting their performance. Mills et al. evaluated the efficiency of a UVGI 
decontamination strategy of intact N95 FFRs contaminated with both an influenza strain (H1N1) and a soiling 
agent (either artificial saliva or artificial sebum) to mimic real-world situations. The UVGI device was custom 
built and made of polished aluminium. Fifteen different N95 FFRs were tested and it was noted that variation in 
FFR design may influence the effectiveness of decontamination for reuse. Twelve of the fifteen N95 FFRs showed 
a significant reduction in viral viability under UVGI decontamination; the remaining three were of similar 
structure (cup-shaped, rough texture). The FFR straps posed a challenge for decontamination, with straps of 
only five of the FFRs showing a significant reduction in virus viability for both saliva and sebum conditions. 
This finding is important because proper doffing techniques for FFR requires handling of the straps, which 
could be a driver of fomite transfer. A further point to be highlighted here is the use of the term “significant 
reduction” when speaking of viral viability in FFR decontamination strategies. There are no guidelines for 
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decontamination levels, however, Mills et al. considered a ≥3 log reduction to be significant.  The principle 
for sterilisation is >6-log reduction in microbial population, and is translated into the dosage, D99, where that 
would result in a 99% disinfection rate (Kowalski, 2009).  

Airborne disinfection

IPC measures such as effective ventilation, enhanced by particle filtration and air disinfection, may be needed to 
reduce the risk of indoor airborne infection in healthcare facilities managing COVID-19 patients (Morawska, 
et al., 2020; Xiao & Torok, 2020). Airborne transmission of microorganisms can be reduced by employing a 
ventilation strategy (natural, mechanical, or negative pressure isolation) that dilutes and removes contaminated 
air from spaces and controls airflow patterns in rooms and buildings (Coker, et al., 2000). The efficacy of such 
a system is dependent on, among other factors, the rate at which the contaminated air is removed from the 
environment. As an example, the WHO specified in the interim IPC guidelines, a ventilation rate of 160l/s/person 
in a COVID-19 infective ward where a natural ventilation strategy is employed (World Health Organization, 
2020b). Morawska et al. (2020) acknowledges that the capacity to increase ventilation rates may be limited by 
the original design and implementation of the ventilation strategy; employing local filtration and disinfection 
methods, such as UVGI, becomes beneficial. 

Upper-room UVGI could be used in pandemic situations for air disinfection (McDevitt, et al., 2012). In 
upper-room UVGI, mercury vapour lamp luminaires are typically suspended from the ceiling or mounted on 
walls. These luminaires may have a shield at their base directing radiation upwards, or may have horizontal 
louvres directing rays horizontally outward, creating an intense UVGI zone in the upper part of the room and 
minimising radiation levels in the occupied part of the room. These systems are dependent on good air mixing 
to transport contaminated air from the occupied lower room to the irradiated upper-room. Air mixing can be 
improved with mixing fans in naturally ventilated systems, and the positioning of supply diffusers and exhaust 
grilles in mechanically ventilated systems (NIOSH, 2009). 

Appropriately designed and properly maintained upper-room UVGI systems have shown to offer protection 
to healthcare workers in tuberculosis (TB) settings (NIOSH, 2009). McDevitt et al. (2012) characterised the 
susceptibility of influenza A to different doses of UV-C at different humidity levels. Their work formed the 
scientific basis for designing effective upper-room UVGI systems for the prevention of the transmission of the 
influenza virus via the airborne route. They found that influenza is effectively inactivated during exposure to 
UVGI and there is variation on the susceptibility of influenza to UV-C at different humidity levels, where a 
higher relative humidity corresponded to a decreased susceptibility. The effect of relative humidity on UV-C 
efficacy is microorganism dependent. Kowalski & Bahnfleth (2000, p. 4) discuss previous studies in which 
increased resistance to UV-C is experienced with a decrease in relative humidity.   

Ethington et al. (2018) investigated whether using continuous upper-room UVGI to lower the bioburden in 
the air would positively affect the rate and types of hospital-acquired infections in an intensive care unit in a 
long-term acute care hospital, without any other change in cleaning regimens. The results showed a significant 
reduction in airborne bacterial load post-installation and a reduction in hospital infection rates for 12 months 
of UVGI use, compared to the preceding 12 month records. The drop in hospital infections was not associated 
with those typically subject to airborne transmission, and not all the reductions in hospital acquired infections 
were statistically significant, though an obvious downtrend was seen. 

More recently, upper-room UVGI LED systems have been investigated. Nunayon et al. (2020) designed and 
compared the disinfection efficacy of a novel upper-room UVGI LED system to that of a conventional mercury 
vapour lamp upper-room UVGI system. Performance was quantified by log reduction and single-stage decay 
rates of aerosolised bacterial strains of Escherichia coli, Serratia marcescens and Staphylococcus epidermidis. 
They found that the decrease in microbial concentrations in the air of the upper-room UVGI LED against the 
upper-room mercury vapour lamp UVGI system varied widely based on the species of bacteria. A distinct 
feature of UVGI LED is that irradiation levels can be adjusted. Nunayon et al.’s study highlighted the promise of 
UVGI LED for future application in airborne disinfection. 

UVGI should not be considered a primary environmental control measure. For TB IPC, upper-room UVGI 
serves as an adjunct to other environmental IPC measures such as ventilation, in settings occupied by 
unsuspected or undiagnosed individuals, or in areas where suspected and confirmed TB patients are located or 
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accommodated, such as negative-pressure isolation rooms, wards and locations where high-risk procedures are 
performed (NIOSH, 2009).

UVGI is also used in mechanically ventilated systems within the delivery or exhaust ducts, typically called 
in-duct UVGI, where UVGI lamps are used to either decontaminate the air entering the room, or the air 
leaving the room, which may be recirculated to other parts of a facility. Kowalski & Bahnfleth (2000) present a 
methodology for the design of a more effective UVGI airstream disinfection system. 

UVGI in South Africa

UVGI is readily available in South Africa, but much of the focus and scientific literature is concerned with 
upper-room UVGI as an adjunct environmental control measure in reducing the airborne transmission of 
TB. An infection control audit of 10 primary healthcare facilities in the Western Cape revealed that there were 
no UVGI fixtures installed in those facilities (Mphaphlele, et al., 2012). Mphaphlele et al. (2015) presented a 
controlled trial of the effectiveness of upper-room UVGI disinfection with air mixing at the airborne infection 
research (AIR) facility, based at a referral TB hospital in eMalahleni, South Africa.  The AIR facility is based 
on the design of the Riley facility, which exposes guinea pigs, in two chambers, to exhaust air from wards.  
One chamber serves as the control, and the other the intervention – upper-room UVGI. The study was able to 
achieve an estimated 80% protection with two well characterised UVGI fixtures and ceiling fans and forms the 
basis for new dosing guidelines, where the fixture UV output must be known and incorporated into the dosing 
formula in the design of upper-room UVGI strategies. 

Two recent publications (Singh, et al., 2018; Mamahlodi, 2019) highlight the current status of upper-room 
UVGI in South Africa. Singh et al. (2018) investigated the efficacy of local (South African) UVGI device 
installations in public sector healthcare facilities, and determined the coverage of these installations. Airborne 
TB inactivation experiments were conducted in an ambient conditioned walk-in chamber. The test chamber 
was fitted, in turn, with UVGI devices from four South African suppliers. There are no standardised tests 
to assess the efficacy of UVGI devices and systems, but generally, the objective would be to reduce airborne 
transmission by 80%, as in Mphaphlele et al. (2015). An alternative metric for assessing the efficacy of UVGI 
systems is the UVGI inactivation rate, measured in equivalent air changes per hour (eACH) that a UVGI system 
would deliver, as used by Miller et al. (2002). The UVGI inactivation rate is calculated by establishing the rate of 
decay of an airborne pathogen with and without the UVGI system; the difference between the two is calculated 
to be UVGI inactivation rate. 

UVGI devices investigated by Singh et al. (2018) included ceiling-mounted, wall-mounted and portable 
devices. The effectiveness of the tested UVGI devices ranged from 43.7 to 100%, with six of the 13 devices 
tested meeting 100% desirable effectiveness. Very few of the open and closed UVGI devices met occupational 
safety standards. In the same study, a self-administered questionnaire was sent to delegated authorities at 119 
healthcare facilities. The questionnaire sought to elicit which UVGI devices, and how many, were installed 
in which facilities, as well as details on function and maintenance. A total of 15 089 devices were reported 
to have been installed in South African public healthcare facilities, although the information retrieved was 
considered poor. Two provinces (Mpumalanga and the Free State) did not supply any installation information. 
KwaZulu Natal reported that UVGI had been installed in two facilities, however, it had been discontinued due 
to complaints of skin irritation and conjunctivitis. Gauteng confirmed that 11 facilities had installed UVGI, but 
52% of these devices were either not functional or not in use. The study found that UVGI device installation 
did not consider air mixing, room volume, occupancy and dosing, and routine maintenance. Additionally, 
there was no evidence of operational and maintenance manuals or training of personnel at the time of data 
collection (2014). Most devices had South African Bureau of Standards certification (SANS(IEC) 60-589-2-1), 
however, this certification is for general purpose luminaires, and not explicitly for UVGI to reduce airborne 
microorganisms. Many of the devices that performed well in the efficacy test were not widely installed in public 
healthcare facilities, as these were closed devices, rather than the preferred louvred devices. The devices with 
closely spaced louvres were less effective than the closed devices, possibly due to the reduction in UV output. 

Singh et al. (2018) illustrate several barriers to effective implementation of UVGI systems, which support the 
moratorium on new installations of UVGI systems in South African public healthcare systems imposed by the 
National Health Council in June 2011. The onus of the dissolution of the moratorium lies with the National 
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Department of Health (NDoH), which must ensure that it provides supplementary technical specifications for 
upper room UVGI and reserve the right to witness any performance tests that may be needed (NDoH, 2020). 
In addition, NDoH can require a system designer to present for approval a final technical design report prior 
to system installation with a description of the design methodology, design assumptions and performance 
target, as well as a specified compliance certificate. Currently, there are no national standards on the design 
and implementation of UVGI systems in South Africa, but they are under development (Singh, et al., 2015; van 
Reenen, et al., 2019).  

UVGI innovation to address COVID-19 has started taking place in South Africa, for example in the form 
of a UV-C sanitiser to disinfect air, surfaces, whole rooms and face masks (University of Cape Town, 2020). 
The potential application lies beyond healthcare settings, and includes large areas such as lecture theatres. The 
design incorporates wall and ceiling mounted units in combination with occupancy-detection sensors. When 
the room is vacant, the units are triggered to irradiate the space for a designated period and is automatically 
deactivated. Many South African suppliers have UVGI air and surface disinfection units on offer, including 
applications for ambulances (www.technilamp.co.za; www.ulilog.co.za; www.thelamphouse.co.za; www.
ozoneair.co.za ) and some South African suppliers  have explicitly suggested UVGI for COVID-19 responses 
on their webpages (www.thelamphouse.co.za; www.ozoneair.co.za ). 

Discussion

We have shown how available technology, in the form of UVGI devices, has been used as an environmental IPC 
measure to reduce infectious disease transmission. Recent scientific literature has shown SARS-CoV-2 to be 
susceptible to UVGI; UVGI is therefore posited to be a promising technology for COVID-19 and beyond. This 
pandemic has resulted in innovation to overcome some of the decontamination and disinfection challenges 
associated with the coronavirus. The shortage of PPE in the form of respirators and facemasks is an example. 
While manufacturers had to ramp up production and new manufacturers started to supply these forms of 
PPE, the shortage was also addressed through exploring reuse of respirators and facemasks. UVGI has proved 
to be beneficial here, with studies showing its effectiveness. In a similar way, the disinfection of PMEs and 
ambulances using UVGI could also be investigated, and evidence made available for best practice in these areas.  

The implementation of UVGI in South Africa, specifically upper-room UVGI to minimise the airborne 
transmission of TB, has faced many challenges; it may therefore not be an attractive solution towards future IPC 
practices. Although the disinfection potential of UVGI has been proven, it is dependent to a large extent upon 
the application of appropriate procedures for monitoring, validation and maintenance to avoid creating a false 
sense of safety for health care workers, patients and visitors. The operating and maintenance costs of upper-
room UVGI are considerably lower than for mechanical ventilation, but intermittent and costly electricity 
can be a challenge (Nardell et al., 2013). With South Africa experiencing power outages, the effective use of 
UVGI can be adversely affected unless contingency measures are put in place.  While upper room UVGI, often 
combined with natural or mechanical ventilation, has been described as a cost-effective method for providing 
effective airborne disinfection (Mamahlodi, 2019), this is yet to be verified no investment cases for UVGI 
in South Africa have been published.  Due to resource constraints, it is not feasible to install upper-room 
UVGI throughout health facilities in South Africa. Singh & Matuka (2015) recommend that the use of UVGI 
in healthcare facilities be prioritised based on risk assessment; the technology should complement rather than 
replace a ventilation strategy. 

South Africa has a pool of UVGI actors who have been developing knowledge in this area, including testing 
capability for irradiance and microbial susceptibility. These include actors from national science councils 
and universities. The country has the advantage of being able to capitalise on its existing knowledge base and 
experienced personnel to facilitate training on UVGI. South Africa does possess some infrastructural resources 
in UVGI technology, even though these may be limited to airborne applications, with some UVGI suppliers 
having developed luminaires of acceptable standard for minimising the risk of airborne infection. 

The poor implementation of UVGI as an environmental control measure to minimise the risk of TB transmission 
in South Africa should not undermine its potential in the response to COVID-19. As SARS-CoV-2 has been 
shown to be transmitted via the airborne route, the technology may be employed, with relevant standards and 
guidance. South African UVGI guidelines do not address surface disinfection and fomite transmission. There 
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is an opportunity here to expand what has already been learnt and extend it into a new set of evidence-based 
practice guidelines for South Africa. This may serve as preparation for pathogens of the future which are spread 
by these routes. Thus, the lessons that have been gained in the development and subsequent application of 
UVGI in different settings provide a pool of knowledge to direct further research on how the technology can 
be appropriated to address contemporary and emerging challenges such as COVID-19. UVGI on its own may 
not be the solution to infection prevention and control but it can complement other strategies to make them 
more effective. Further empirical research would be a useful contribution in providing deeper insights into the 
potential and feasibility of UVGI for infection prevention and control of SARS-CoV-2.
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